Overview-SAGE

- Principles
- Methodological outline
- Analytic strategies
- Strengths and limitations
- Examples of applications

SAGE: Serial Analysis of Gene Expression

 Simultaneous and quantitative comparison of gene-specific sequence tags.

SAGE: Principles

- No prior knowledge of genes expressed (The hypothesis is that there is no hypothesis).
- mRNAs represented by short (9 to 13 bp) sequecnce tags
- Concatenation of the tags for efficient sequencing
- Amplification structured to avoid distortion

SAGE: Methodology

SAGE: Methodology

SAGE: Methodology TE

A GGGACATGNNNAAAA CCCTGTACNNNTTTTT

AE

A GGGACATGNNNNNNNNCATGCCC CCCCTGTACNNNNNNNNGTACGGG

B

SAGE: Data output

SAGE Tag	Exp1	Exp2
ATAATACATA	249	469
AAAAAAAA	43	128
AGGACAAATA	144	25
ATACTGACAT	502	612
GCTGCCCTCC	1138	670
CTATCCTCTC	613	707
AGGAGGACTT	180	63
AGCAATTCAA	318	146
ATAATACAAA	10	46
TAGATATAGG	94	22
CAAACCTCCA	68	12
GAAAAAAA	26	60

How many tags?

Genes in Normal Kidney

- GACTTCACGCC

 Mouse kidney androgen-regulated protein
- CTATTCCTCA

 Plasma glutathione peroxidase
- TGTAGCCTCAT
 Na+/K+ ATPase γ chain
- GGCCTTACTTC
 Na+/P_i transporter

What makes a tag reliable?

- Tag should be 3'-adjacent to the 3'most NlaIII (CATG) site
- Matches a well characterized cDNA. ESTs with a polyA signal or tail are next most reliable

CONFIRMATION CRITICAL

SAGE Tag to Gene Mapping

SAGEtag (10 bases):	статестете	Mus musculus	▼ Nialii -	Submit
		-		_

Reliable UniGene clusters matched to this tag:

Mm.7156: glutathione peroxidase 3

SAGE library data for this tag:

No SAGE data for this species and/or anchor.

Summary of UniGene clusters found for this tag:

UniGene cluster id(s)	UniGene cluster title	Tag->cid frequency	Get seqs
	cDNA: well-characterized		
Mm.7156	glutathione peroxidase 3	3/3	90
	EST: 3' oriented, 3' label		
<u>Mm.7156</u>	glutathione peroxidase 3	24/24	90
	EST: 3' oriented, no label		

Reliable UniGene clusters matched to this tag:

Mm. 100791 : RIKEN cDNA 2700038G22 gene

 $\underline{\mathrm{Mm.10098}}$: non-selective cation channel 1

Mm 103857 : RIKEN cDNA 4930556A12 gene

Mm. 1114 galactosidase, alpha

 $\underline{\mathbf{Mm.}}$ 117043: transcription termination factor 1

Mm.11756 : chemokine (C-X-C) receptor 2

Mm. 12322 : RIKEN cDNA 1110004B06 gene

Mm. 1378 : cannabinoid receptor 2 (macrophage)

Mm. 143758 : similar to RAP1 protein

Mm. 153276: Mus musculus, clone MGC:8197, mRNA, complete cds

Mm. 156851 : RIKEN cDNA 2310050N03 gene

Mm. 158192 : RIKEN cDNA C330014O21 gene

Mm. 158221 : RIKEN cDNA 1110035E04 gene

Mm. 159789 : RIKEN cDNA 2900022B07 gene

+ 20 other clusters

SAGE: Data analysis

Resource

Contact Information

SAGE300	www.sagenet.org
SAGEmap	www.ncbi.nih.gov/SAGE
P value	igs-server.cnrs-mrs.fr/
P value	Email: j.m.ruijter@amc.uva.nl
eSage	Email: ehm@umich.edu
USAGE	http://www.cmbi.kun.nl/usage/bin/login.cgi

Examples

Expression profile from normal mouse kidney

• Analyses of 3,868 tags yielded 1,453 unique kidney transcripts:

42% had known function

35% ESTs

23% were unknown

- Genes that regulate normal renal physiology accounted for 19% of all tag sequences.
- Transcripts encoding proteins which limit tissue injury were expressed.

Comparison of mRNA frequencies

Comparison of mRNA expression profiles from kidneys of normal mice and mice with kidney disease will identify chronic renal disease genes.

SAGE: Results

- 49,588 tags comprising 20,594 unique genes in the kidney transcriptome
- Over 5,000 genes expressed at a level of \geq 2 copies
- 5,521 not in public databases

SAGE: Statistical analysis

- Differential expression:
 - * 238 genes differentially expressed at p < 0.05
 - * 63 genes differentially expressed at p < 0.01. Of these 25 underexpressed in kidneys of ROP-Os/+ mice

SAGE: Gene networks

Pubgene, Nature Genetics, 2001; www.pubgene.uio.no

SAGE: Summary

 Advantages Comprehensive **Quantitative** Can be done in a small lab Modifications for small samples, to reduce frequency of nonunique tags

SAGE: Summary

Drawbacks

Labor-intensive

Replication

Analytic tools limited

Need to identify genes encoding tags; unknowns a particular problem

Is a tag sequence unique for its gene? Sampling error

Colleagues

- Ashraf El-Meanawy
- Jeff Schelling
- Sudha Iyengar
- Shri Barathan
- Katrina Goddard